What Limits the Maximum Output Power of Long-Wavelength AlGaInAs/InP Laser Diodes?

نویسندگان

  • Joachim Piprek
  • Anthony J. SpringThorpe
چکیده

We analyze the high-temperature continuous-wave performance of 1.3m AlGaInAs/InP laser diodes grown by digital alloy molecular-beam epitaxy. Commercial laser software is utilized that self-consistently combines quantum-well bandstructure and gain calculations with two-dimensional simulations of carrier transport, wave guiding, and heat flow. Excellent agreement between simulation and measurements is obtained by careful adjustment of material parameters in the model. Joule heating is shown to be the main heat source; quantum-well recombination heat is almost compensated for by Thomson cooling. Auger recombination is the main carrier loss mechanism at lower injection current. Vertical electron escape into the -doped InP cladding dominates at higher current and causes the thermal power roll-off. Self-heating and optical gain reduction are the triggering mechanisms behind the leakage escalation. Laser design variation is shown to allow for a significant increase in the maximum output power at high temperatures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of variation of specifications of quantum well and contact length on performance of InP-based Vertical Cavity Surface Emitting Laser (VCSEL)

Abstract: In this study, the effects of variation of thickness and the number of quantumwells as well as the contact length were investigated. In this paper, a vertical cavity surfaceemitting laser was simulated using of software based on finite element method. Thenumber of quantum wells was changed from 3 to 9 and the results which are related tooutput power, resonance ...

متن کامل

InAs/InP(100) quantum dot laser with high wavelength stability

Introduction: The lasing wavelength of a semiconductor laser inevitably changes with varying the operation temperature, which is, however, not desirable for applications requiring specific and stable light wavelength. Thus, laser diodes with wavelength insensitive to temperature are fascinating and can drastically ease the critical requirements on precise temperature control. The quantum dot (Q...

متن کامل

Design of a new asymmetric waveguide in InP-Based multi-quantum well laser

Today, electron leakage in InP-based separate confinement laser diode has a serious effect on device performance. Control of electron leakage current is the aim of many studies in semiconductor laser industry. In this study, for the first time, a new asymmetric waveguide structure with n-interlayer for a 1.325 μm InP-based laser diode with InGaAsP multi-quantum well is proposed and theoreticall...

متن کامل

Integrated AlGaInAs-silicon evanescent race track laser and photodetector.

Here we report a racetrack resonator laser integrated with two photo-detectors on the hybrid AlGaInAs-silicon evanescent device platform. Unlike previous demonstrations of hybrid AlGaInAs-silicon evanescent lasers, we demonstrate an on-chip racetrack resonator laser that does not rely on facet polishing and dicing in order to define the laser cavity. The laser runs continuous-wave (c.w.) at 159...

متن کامل

High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser

We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001